首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   260篇
  免费   17篇
  国内免费   37篇
安全科学   31篇
废物处理   2篇
环保管理   139篇
综合类   79篇
基础理论   17篇
污染及防治   11篇
评价与监测   5篇
社会与环境   18篇
灾害及防治   12篇
  2023年   4篇
  2022年   11篇
  2021年   13篇
  2020年   7篇
  2019年   4篇
  2018年   2篇
  2017年   7篇
  2016年   10篇
  2015年   7篇
  2014年   9篇
  2013年   11篇
  2012年   18篇
  2011年   11篇
  2010年   10篇
  2009年   11篇
  2008年   16篇
  2007年   17篇
  2006年   13篇
  2005年   8篇
  2004年   7篇
  2003年   4篇
  2002年   13篇
  2001年   13篇
  2000年   7篇
  1999年   8篇
  1998年   5篇
  1997年   7篇
  1996年   4篇
  1995年   6篇
  1994年   6篇
  1993年   7篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
  1984年   3篇
  1982年   2篇
  1981年   1篇
  1980年   4篇
  1979年   3篇
  1978年   1篇
  1976年   1篇
  1975年   2篇
  1972年   1篇
  1971年   2篇
  1969年   1篇
排序方式: 共有314条查询结果,搜索用时 15 毫秒
91.
应用AFS-9530型双道原子荧光光谱法研究土壤样品中砷和汞的联合测定技术,将土壤样品置于(1+1)王水的微波消解体系中进行消解,加入1m L 5%的重铬酸钾溶液保护汞,加入5m L(5%硫脲+5%抗坏血酸)混合液将五价砷还原为三价,以硼氢化钾为还原剂在5%盐酸介质中测定砷和汞,最低检出限为砷0.55μg/L,汞0.30μg/L,回收率砷在93.5%—105.8%之间,汞在85.5%—104.9%之间,满足准确度要求。  相似文献   
92.
Stream tributaries in the Des Moines River basin have been classified according to the glacial terrain through which they flow. Three stream types were categorized as follows: (1) streams that flow entirely on Wisconsin drift, (2) streams that flow entirely on Kansan drift, and (3) streams that have their headwaters located on new drift but have their lower reaches flowing on older drift. Selected channel and valley characteristics were measured and used to verify the stream type classification. Five variables were chosen for use in a multiple linear discriminatory analysis, which is a statistical technique developed for the purpose of classifying observations into one of several categories which have been predetermined. The streams in each group were verified with the exception of three anomalies based on the probability associated with the largest linear discriminant function. The rationale for the three anomalous streams is not easily determined. But, they are considered to be associated with pre-glacial drainage or at least pre-Wisconsin age drainage. Otherwise, the analysis shows that the major channels and valleys in the Des Moines River basin tend to reflect the glaciated upland surface.  相似文献   
93.
ABSTRACT: Stream channel stability is affected by peak flows rather than average annual water yield. Timber harvesting and other land management activities that contribute to soil compaction, vegetation removal, or increased drainage density can increase peak discharges and decrease the recurrence interval of bankfull discharges. Increased peak discharges can cause more frequent movement of large streambed materials, leading to more rapid stream channel change or instability. This study proposes a relationship between increased discharge and channel stability, and presents a methodology that can be used to evaluate stream channel stability thresholds on a stream reach basis. Detailed surveys of the channel cross section, water surface slope, streambed particle size distribution, and field identification of bankfull stage are used to estimate existing bankfull flow conditions. These site specific stream channel characteristics are used in bed load movement formulae to predict critical flow conditions for entrainment of coarse bed material (D84 size fraction). The “relative bed stability” index, defined as the ratio of critical flow condition to the existing condition at bankfull discharge, can predict whether increased peak discharges will exceed stream channel thresholds.  相似文献   
94.
Using data related to stream order and the morphological characteristics associated with streams of different discharge rates, an estimate of the river resources of the United States is made. The national totals are: 3,200,000 miles total length of rivers; 15,000 square miles of river surface; and 29 cubic miles of water stored in river channels. Using the same techniques, more exact estimates may be made for individual river basins. Suggestions are given for application of the techniques and river data in the management of water resources.  相似文献   
95.
Loss due to channel erosion in the Dallas, Texas, area is estimated to approach one-half million dollars in the last several years. Hydrogeomorphic analysis of natural and urban chalk and shale watersheds was performed in the central Texas area on watersheds ranging in size from 0.5 to 10 square miles in an effort to more adequately predict channel enlargement due to urbanization. Chalk watersheds were found to have greater drainage density, greater channel slope, lower sinuosity, and greater discharge per unit area than similar sized shale watersheds under natural conditions. With subsequent urbanization of the watersheds, chalk channel enlargement was from 12 to 67 percent greater than shale channel enlargement for similar sized watersheds. Greater enlargement in chalk channels is attributed to greater channel velocities and unit tractive force. Vegetation seems to play a significant role in influencing channel adjustments to the new flow regimes brought on by urbanization. Channel response to urbanization is documented and specific nonstructural guidelines are proposed which could reduce structural loss along urban stream channels.  相似文献   
96.
ABSTRACT A flume study was conducted to examine (1)changes in the particle-size distribution of sediments in riffles due to the proportion of sand in transport and the total rate of bedload transport at the time the riffle is deposited and (2) the effect of high sand transport rates on the stability of gravel riffles. The median particle size of sediment deposited in the riffle was larger than that of the sediment in transport. Small but significant (a = 0.05) decreases in the median particle size of riffle sediments resulted as the sand-to-gravel ratio. Increased concentrations of sand in transport caused previously stable gravel riffles to undergo scour. These results, in combination with information from other studies, suggest that an alluvial channel with pool-riffle sequences and with sand and gravel beds may respond to an increased delivery of sand by reducing form roughness. Form roughness can be reduced by degrading riffles and filling pools. Subsequent responses may be increases in width-to-depth ratio and slope.  相似文献   
97.
ABSTRACT: Geomorphic processes may partly determine channel geometry. Soil particle uplift during freezing and thawing cycles and bank sloughing during wetting and drying periods were observed. Soil properties and channel dimension were measured to determine the dominant processes controlling channel geometry in eight small (mean area 0.096 km2) drainages in Logan Canyon, Utah. Soil cohesion was low (plasticity index > 15) for all but one of the drainages sampled. Basin scale geomorphic variables were examined to determine if they control channel dimension. Bankfull width was highly correlated to channel length and valley length with r2 values of 0.85 and 0.84, respectively. A strong canonical correlation (0.64) showed that distance from the watershed divide, bank liquid limit, and bank sand content were effective predictor variables of bankfull width and depth. The interrelations between geomorphic and pedogenic processes were the strongest determinants of ephemeral channel dimension in this study.  相似文献   
98.
Adsorption behavior of condensed phosphate on aluminum hydroxide   总被引:1,自引:0,他引:1  
Sodium pyrophosphate (pyro-P, Na4P2OT), sodium tripolyphosphate (tripoly-P, Na3P3O10), and sodium hexametaphosphate (meta-P, (NaPO3)6) were selected as the model compounds of condensed phosphate to investigate the adsorption behavior of condensed phosphate on aluminum hydroxide. The adsorption was found to be endothermic and divisible into two stages: (1) fast adsorption within 1 h; and (2) slow adsorption between 1 and 24 h. The modified Freundlich model simulated the fast adsorption stage well; the slow adsorption stage was described well by the first-order kinetics. The activation energies of pyro-P, tripoly-P, and meta-P adsorption on aluminum hydroxide were determined to be 20.2, 22.8 and 10.9 kJ/mol P adsorbed, respectively, in the fast adsorption stage and to be 66.3, 53.5 and 72.5 kJ/mol P adsorbed, respectively, in the slow adsorption stage. The adsorption increased the negative charge of the aluminum hydroxide surface. Transmission electron microscopy and energy dispersive X-ray analysis analyses provided evidence that the adsorption was not uniform on the surface and that the small crystals contributed more to the fast adsorption than the normal sites did. The results from X-ray fluorescence spectrometry and X-ray photoelectron spectroscopy tests also revealed the uneven adsorption of condensed phosphate as a function of the penetration depth. More condensed phosphates were adsorbed on the outer surface of aluminum hydroxide than in its inner parts.  相似文献   
99.
梯形渠道岸边排污浓度分布的理论分析   总被引:1,自引:0,他引:1  
从无限区域圆形瞬时源扩散的浓度分布公式人手,推导出梯形区域内瞬时线源扩散的近似浓度计算公式,进而得到了梯形渠道岸边排污的浓度分布公式计算公式表明,边坡倾角对污染物的浓度分布影响较大,浓度值随边坡倾角的增加而减小,近似遵循双曲线的递减规律.浓度分布解析解得到了扩散方程数值解的良好验证,两者在污染源附近有所差异,但随着距污染源距离的增加,计算结果愈加吻合,该解析公式可为天然河流岸边污染混合区的污染物浓度估算提供有力的工具.  相似文献   
100.
ABSTRACT: Historic changes in stream channel morphology were investigated in the Georgia Piedmont to better understand the hydrologic processes and functioning of the region's riverine systems. USGS gaging station data and channel geomorphology data were collected from thirty study sites in the Upper Oconee River Basin for flood frequency analysis. Historic and modern (i.e., present-day) channel capacity discharge (i.e., overbank flow) was calculated using Manning's equation and historic channel cross-section records. The recurrence interval for overbank flow was estimated for each site from flood frequency data. Results indicate that channel expansion has occurred throughout the basin, especially in upper reaches. Recurrence intervals for modern overbank events were variable and generally high ranging from < 2 to > 500 years for first to third order streams. They were less variable and lower for fourth and fifth order streams, ranging from < 2 to 3 years. Potential depositional thresholds were identified that exemplify the complex response of sediment distribution patterns throughout the basin. Results indicate overbank flows occur less frequently now than they once did due to historic accelerated sedimentation and subsequent channel expansion. One application of these findings is that these basin processes are likely applicable across the region and may impact the hydrologic functioning of associated Piedmont riverine wetlands that depend on flooding regimes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号